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Investigations were stated in [I] on the influence of electromagnetic bulk forces (EBF) 
on the flow pattern around and the magnitude of the hydrodynamic drag of a sphere. The EBF 
was produced by an electromagnetic source of induction type located within the sphere and 
capable of setting the sphere into translational motion relative to the fluid. From the 
graphs represented in [I] one interesting result can be noted: that the pressure drag coef- 
ficient in the self-moving mode is almost an order of magnitude less than its classical value 
for all the Reynolds numbers investigated between 50 and 300. It is important to clarify 
whether this result is random and associated with the operating mode used in [I] when the 
EBF did not depend on the velocity field under investigation, or it holds for other internal 
sources. It is also interesting to confirm the hypothesis of the possibility of reducing 
the total drag coefficient for Re values exceeding 300. To obtain answers to the questions 
posed, numerical investigations were continued by using a conduction source in the regimes 
when the electrical field and bulk force distributions in the liquid depend on the velocity 
field for Reynolds number values of 103 This paper is devoted to a description of the re- 
sults of these numerical experiments. It is shown that the pressure drag in a self-moving 
regime of internal source operation is a small fraction of the total drag in all the cases 
considered. It is confirmed that the total drag of a self-moving sphere can be less than its 
classical value since a 20% drag reduction is obtained in one of the internal source operating 
modes for Re = 1000. The example of such aflowpermits the assertion that the internal source 
EBF possess the capability of reducing the hydrodynamic drag of small span bodies. 

A sphere of radius a is considered with an internal electromagnetic field source in a 
viscous incompressible fluid flow. The flow velocity at infinity is u0, the density, kine- 
matic viscosity, and fluid conductivity are p, ~, o, respectively. The internal source con- 
sists of a magnetic system and a system of sectioned electrodes producing a magnetic and elec- 
tric field distribution, periodic in a, within the fluid, and a bulk force distribution as- 
sociated with these fields. (The spherical coordinates are introduced analogously to [I], in 
particular, the angle e is measured from the direction opposite to u0.) 

The magnetic field in a fluid in an induction-free approximation depends only on the 
magnetic system and is determined uniquely by the assignment of its r-component on the sphere 
surface. Let 

//~I~=~ =//oh(0) cos m~, (1) 

where m is the analog of the number of pole-pairs of the magnetic system, the function h(e) 
characterizes the Hr distribution over the sphere surface. We assume that lh(0) Ima x = I, 
therefore H0 defines the scale of the magnetic field in the system. The dimensionless mag- 
netic field in the fluid H(r, 0, ~) = --gradx(r, 0, a) is described by a scalar potential sat- 
isfying the Laplace equation and the conditions 

O~/Or]i=~ = --h(0) cos ma, %[~=~= 0. (2) 
The solution for X has the form 

o, = o) = E (3)  

where the coefficients 

Az 
1 

21~-i (l--m)! 
2 ( l t l ) ( t ~ m )  ! h(O) P~(cosO)dcosO 
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are determined from the first boundary condition in (2). 

As already noted, the outer surface of the sphere is comprised of perfectly sectioned 
electrodes whose dimensionless potential is given in the form 

qo (1, O, ~) = % ( 0 )  s in ra~z. (4) 
In specific computations qgo(0 ) was taken proportional to the function h(0) defining the mag- 
netic field (1) on the sphere surface, in the form 

%(0) = - - ( •  " (5) 

where the parameter ~ yields the maximal value of the dimensionless ~-component of the elec- 
tric field on the sphere surface. The potential distribution in the fluid satisfies the equa- 
t ion 

A ~ =  (H.curl v) (6 )  

and, therefore, depends on the velocity field. Let us note that u0H0/c and u0H0a/c, the 
velocity scale u0 are taken as the scales of the electric field and its scalar potential to 
make the proceedings dimensionless, while the bulk forces are made dimensionless by using the 
scale 

2 2 
1o = ~ u o H o / c  �9 

We assume that the hydrodynamic flow pattern is axisymmetric 

v = v r (r, 0)er + Vo(r,; 0)e0, w ---- rot v = w(r+ 0)e~. (7) 

The p o t e n t i a l  s a t i s f y i n g  ( 6 ) ,  the  bounda ry  c o n d i t i o n  ( 4 ) ,  and the  c o n d i t i o n  (P]r=oo----0 h e r e  
has the following solution 

tp(r, O, r = ~(r, O)sin tact,; (8) 

where ~(r, 0) is determined from the problem 

o ~ t o sin 0 ~ _-- m ^ 
Or 2 (r'~) + r sin 0 00 r sin 9" O - -  s--{-~% (r,. O) w (r,~ 0),, 

(9) 
~(i~ o) = ~0(0), $(oo, 0) = o. 

The following refinement must be made relative to the assumption (7). We start with the 
remark that the force field 

fl  = [E x H ] +  ( H . v ) H - -  H2v (10) 

i s  g e n e r a l l y  n o n a x i s y m m e t r i c  f o r  t he  f i e l d s  E,  H, v g iven  by the  r e l a t i o n s h i p s  ( 8 ) ,  ( 3 ) ,  ( 7 ) .  
It contains an additional three-dimensional addition dependent on ~, i.e., can be represented 
in the form 

f l=[]r(r ,  O)er +]o( r ,  O)eol+ [fr(r, O) cos2mae~ +To(r, O) cos 2~n~eo ,n-7~(r ~ O) sin 2mae~l ;  (11) 

---- r ~sin0 00 7 Or 0-0 r 2 + ' 
(12) 

/o = T t,~--~-o~-, (~x) + v -  o~ oo V O L k ~ )  + k )J/ 

(expressions are not presented here for the components of f). Therefore, the desired velocity 
field can also be represented in the form of a sum v1(r, e, ~) = v(r, 0) + q(r, 0, ~), (<q(r, 
O, ~)> = 0, where the angular brackets denote the results of taking the average with respect 
to the angle ~), where the first term in the sum, which describes the axisymmetric velocity 
field component of interest to us, is represented by the equations divv = 0, (vV)v = --Vp + 
(2/Re)Av + 2Nf -- <(~V)~> containing an axisymmetric component of the force field f(r, 0), an 
axisymmetric component of the pressure p(r, ~), and additional (Reynolds) stresses due to the 
three-dimensional addition in the velocity field. Since the solution of the problem in the 
complete three-dimensional formulation is fraught with almost insuperable difficulties at 
this time (the three-dimensionality in the presence of large gradients in the desired quan- 
tities), there is a need to limit the investigation to the axisymmetric part of the flow by 
ignoring the mentioned Reynolds stresses in the motion equation. The admissibility of this 
latter step is confirmed indirectly by using calculations of the component f (after solving 
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each variant) and comparing them with the forcefield f which takes part in the formation of 
the axisymmetric velocity field. Calculations show that the components fr, ~ are negligibly 
small in the versions investigated and they need not be taken into account. As regards ~e, 
the fact that although its maximal value (occurring directly at the surface of the w at 
the point @ = v/2) is just 2.5-3.0 times smaller than the maximal value of f@, and f8 damps 
out much more rapidly both along the radius, and with the distance from the angle 0 = v/2. 
It can consequently be expected that three-dimensional additions to the velocity field are 
considerably weaker than the axisymmetric components. Therefore, the Reynolds stresses they 
specify are small compared with the term (v.V)v in the motion equations, and discarding them 
does not result in noticeable error in the description of the axisymmetric part of tlhe flow. 
Precisely this circumstance is indeed to be understood when the assumption (7) is mentioned. 

The considerations presented do not naturally avert the necessity for studying the prob- 
lem in a three-dimensional formulation but permit it to be simplified by making possible the 
utilization of linearization in the small three-dimensional additions to the velocity field. 

Thus, under assumption (7) the problem is reduced to the combined solution of (9) and 
the hydrodynamics equations in the stream function-vortex variables [I]: 

E Z ~  - -  r w  s i n  O = 0 ,  
' �9 

Zr ['~r ~ -@ \~ l  ao Or ~ + ffersTnO E (rsmOw)+ NO(r,O)=O, 

where r = curl~f(r, S)[the fieldf is defined by the relationships (12)!, Re = u02~z/~; N = 
l 'o a 0 ~ sinO 0 ( t O)  
4 Pu0/22 , and the operator is E'------+0r s r --~- 0--6 s-]-n-6"-~ " 

The numerical solution is performed analogously to [I]. A more compact computational 
mesh containing 80 points along the radius and 60 points along the angle (3 was used on the 
sphere surface. 

The calculations were executed for functions h(@) = sin28 and r defined by (5) for 
which the maximal force field is produced near the plane ~ = v/2. The Reynold number varied 
between 102 and 103 , the parameter ~ = 1.6, and the number m took on the values 4 and I0. 

The distributions ~, w, q9 and the distribution of the dimensionless bulk forces in the 
fluid, as well as the pressure distribution on the sphere surface were calculated for differ- 
ent N. As in [I], on the basis of these data the drag coefficients cp(N), cf(N), and cd(N) , 
the dimensionless thrust force 

ao 

F 1 (m, N) = - -  S ~ (/~ cos 0 - -1o  s'in 0) 2zr ~ sin 0 dO dr, 
1 O 

a s  w e l l  a s  t h e  v a l u e  N = N ,  a t  w h i c h  t h e  s p h e r e  b e c o m e s  s e l f - m o v i n g ,  w e r e  c a l c u l a t e d .  
c a l c u l a t e d  w e r e  t h e  m a g n i t u d e s  o f  t h e  e l e c t r i c a l  p o w e r  c o n s u m e d  

U 2 

a ( ~ )  a~f{[Eq-(vXI-I)],E}2rtr'sinOdOdr, 
1 0 

Also 

the total mechanical power of the bulk forces 

/oa3uo ~ S ( f ' v )  2~r2sinOdOdr, 
1 0  

and two different efficiencies 

2 0u02 thrust power = aa -~- c d (N.) u o 

Iq -~ electr ical  power .' 
thrust power 

B p r o p =  mechanical  power 

The results of calculations of the designated integral quantities, referring to the mode N,, 
are presented in Table /. Presented for comparison in the last column of the table are also 
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values of the drag coefficient for a classical flow (N = 0) calculated by means of the for- 
mula [2] 

'24( Re) cd=w~ i +.0,2207 ~ ~ e + - ~ -  , 

obtained by processing the experimental data for I ~ Re ~ 1000. 

It is seen from the data presented in Table I that in all cases cp(N,) has value com- 
prising just several percent of the total drag coefficient Cd(N ,) while the relative weight 
of the pressure drag in the total drag varies between 0.46 for Re = 100 and 0.58 for Re = 400 
for the classical flow, and evidently, to still higher values for larger Re. Hence, it is 
here possible to speak about the disappearance of the pressure drag for the method of sphere 
motion under consideration, although it should be emphasized that the friction drag grows 
here and consequently, the total drag also increases in many cases. This drag increase holds 

TABLE I 

" Fl(m, I "q 

t00 2,58 2,00 --0,ii 2,ii 0,607 ] 0,347 t,070 
1 

J �9 i,i32 

200 i,535 i,i36 --0,043 i,179 0,581 [ 0,342 0,795 
I i,070 

II 

It 

II x 

II 

3QO 

400 

600 

iO00 

lO0 

400 

60O 

iO00 

1,148 

0,952 

0,757 

0,610 

il,O 

3,46 

2,54 

1,80 

0,828 

0,670 

0,510 

0,396 

3,830 

l,il5 

0,796 

0,540 

--0,018 

--0,005 

0,010 

0,041 

--0,189 

--0,052 

--0,030 

--0,009 

0,846 

0,675 

0,500 

O,355 

4,019 

1,167 

0,566 I 0,340 
i,045 

0,554 ] 0,336 
t,020 

0,536 [ 0,335 
I 0,993 

0,507 ] 0,329 
0,946 

0,27310,442t,354 

[ 0,254 I ~0,43i 
1,234 

0'826 1 0'246 I .  1,2150'432 

0,549 0,2351 0,423 
I t,t37 

0,686 

0,625 

0,556 

0,4'9i 

i,070 

0,625 

0,556 

0,491 
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for smaller values of the Reynolds number and vanishes as Re increases. Let Re0 be that 
Reynold number for which the drag of a self-moving sphere equals its classical v~lue; then 
as is seen from the table, Re0 lies between 400 and 600 for m = 4, while a diminution in the 
total drag coefficient of approximately 20% already occurs for Re = 1000. For larger m the 
increase in the total drag because of the EBF is retained to higher values of Re since the 
force field is here pressed closer to the body surface, has a larger intensity, and by ac- 
celerating the near-wall layer of fluid, increases the velocity gradient on the surface more 
strongly. For instance, as is seen from the table, for m = 10 the value of Re0 exceeds some- 
what, i.e., no diminution in cd(N ,) as compared with c (0) occurs within the limits 102 ~ Re ~ 103 

The value of the efficiency varies, in the case under consideration, between 0.33 and 
0.44, i.e., has a considerable magnitude even for a nonoptimal source. As regards ~prop, its 
magnitude is close to or exceeds one. The system with a free field thereby differs from a 
channel type propulsion apparatus. 

The distributions of the field quantities are given in Figs. I-6 for certain of the 
regimes presented in Table I. The curves in Fig. I describe the distribution of the radial 

electric field component E r l r = l = ' O ~ / O r  Ir=isinm~=~'sin~ on the sphere surface. Curves I 
and 2 are obtained for m = 4 and Re = 100 and I000, curves 3 and 4 are obtained for m = 10 
and Re = 100 and 1000. Displayed here for comparison by dashed lines are curves for m = 4 
and 10 obtained without taking account of the space charge, i.e., curves describing the dis- 
tribution Erlr=l in a fixed fluid. It is seen that the volume charge considerably diminishes 
the normal electric field component near the sphere surface in the area of the equatorial 
plane 0 = ~/2, where the bulk charge density is maximal. The nature of the change in Er with 
distance from the Sphere surface is shown in Fig. 2, illustrating the dependence Er = --8~/8r 
(here the dashed lines also correspond to functions obtained without taking account of the 
space charge). It is seen that the space charge makes this dependence nonmonotonic. The 
curves of Fig. 2 correspond to Re = 1000; the results for Re = 100 differ negligibly from 
those represented on the graph and are not superposed. 

This latter remark also refers to Figs. 3 and 4, which characterize the bulk force dis- 
tribution in the fluid and are constructed for Re = 1000, Given in Fig. 3 is the distribution 
of the force components from (11) on the sphere surface. Here the solid lines correspond to 
f0, the dashes to fr, the dash-dots to f0, and the numbers I and 2 refer, respectively, to 
m = 4 and 10. Of the components of the field f describing the three-dimensional addition to 
the force field (11), only f0 is presented since fr, fa are negligibly small. Their maximal 
absolute values (from the computational results), achieved at the points 0 ~ 30 and 66 ~ , 
respectively, equal 2.2-10 -3 and 4.6-10 -2 for m = 4 and are still less for m = 10. Figure 4 
illustrates the nature of the drop in f0 (solid curves) and f0 (dashed lines) along the radius 
in the plane O = ~/2 (the numbers ] and 2 are as in Fig. 3). It is seen that damping of fe 
occurs considerably more rapidly than of f0, where for m = 4 fG does not drop monotonically. 

Represented in Figs. 5 and 6 are the pressure (solid lines) and vorticity (dashed lines) 
distributions in the self-moving mode, respectively, for Re = 100 and 1000. It is seen that 
the flow is separation-free in all cases and is characterized by the presence of large posi- 
tive values of the vorticity on the whole sphere surface; the qualitative behavior of the 
curves is completely analogous to that obtained in [I]. 
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LOCALLY THREE-DIMENSIONAL LAMINAR FLOWS 

V. V. Bogolepov and I. I. Lipatov UDC 532.526 

Local variations in the flight vehicle surface, either specially designed or natural, 
may significantly affect heat transfer and skin friction and determine the state of the 
boundary layer. Analysis of the limiting solutions to Navier--Stokes equations as Re § ~ (Re 
is Reynolds number) carried out in [I, 2] showed that different states of laminar boundary 
layer are possible near two-dimensional roughnesses, characterized by a difference in the 
ratio of viscous forces to inertia forces and in the nature of viscous-inviscid interaction 
near the roughness. The method of matched asymptotic expansions was used in [I, 2] to study 
such flow situations and numerical results for the corresponding boundary-value problem were 
obtained. Subsequently, results were obtained for studies on specific flow conditions or 
roughness shapes [3-9]. In practice, three-dimensional and not two-dimensional roughness is 
more frequently encountered; interest in the study of flow past such roughness is also asso- 
ciated with the problem of the flow past elements of relief on the earth's surface. Results 
of investigations on flow past three-dimensional roughness are given in [10-16]. However, 
not all possible flow conditions near three-dimensional roughness have been investigated. 
This paper deals with studies on the flow past roughness whose length is less or equal to 
the boundary-layer thickness as well as longer roughness in whose neighborhood there is no 
interaction with the external inviscid flow. 

I. Consider a steady flow past three-dimensional roughness located at the bottom of 
a laminar boundary layer at a distance 1 from the leading edge of a flat (Fig. I). 

The coordinate system is chosen such that x axis is in the direction of the external 
flow, y axis is normal to the surface, and z axis is perpendicular to x and y axes. It is 
assumed that the velocity profile in the laminar boundary layer upstream of the roughness has 
velocity components in the x and y directions only. 

The above assumption is true if the lateral edge of the flat plate is sufficiently far 
from the roughness. The following notations are used for cartesian coordinates and the re- 
spective vector components of velocity, total enthalpy, density, pressure, and dynamic vis- 
cosity: 

~xl, yl, zl, u~u, u~v, u~w, ~oott, p~p, p~p, ~| 

(the subscript ~ denotes dimensional quantities in the free stream). Limiting flow situation 
at large but subcritical Reynolds numbers (Re = p~u~l/~) when laminar flow is retained is 
considered. 

It is assumed that the transverse dimension b of the roughness is of the same order as 
the streamwise dimension a [the flow near slender roughness b = o(a) will be considered be- 
low]. It is worth mentioning that the flow past roughness with a = o(b) reduces to a two- 
dimensional problem and the flow past roughness with equal streamwise and transverse dimen- 
sions leads to a three-dimensional problem. It is also assumed that for given values of a 
and h the thickness of the roughness c is such that in the disturbed flow near the roughness 
the order of the viscous force is not less than the inertial force. Considering the velocity 
profile in the boundary layer near the surface of the body to be u ~ y/60 and making an order 
of magnitude analysis of terms representing viscous and inertial forces in the x-momentum 
equation, we get 

c <,  O(asX/a), 8 o  = s = ~ e  - ' I /2 .  ( 1 . I ) 
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